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Abstract

This paper developed a least-squares method to evaluate the mixed-mode stress intensity factors (SIFs) of the isotro-
pic material using the computer images from the digital-camera experiment. This experiment measures the crack opening
displacement (COD) and then evaluates SIFs by using the least-squares method. The attractions of this method include:
(1) specimen preparation and experiment procedures are not complicated and (2) the isolation of the micro-vibration is
not necessary in the experiment. Both finite element simulations and laboratory experiments were applied to validate the
current least-squares method with acceptable accuracy, if the even terms of the Irwin’s equation are removed.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The main purpose of this paper is to evaluate in-plane stress intensity factors (SIFs), K; and Kjy, for a
centrally cracked steel plate using the computer images from digital-camera experiments. In the past several
years, digital-camera or charge-coupled device (CCD) experiments have been used to fracture mechanics.
McNeill et al. (1987) used the computer image correlation of deformed white light speckle patterns in the
crack tip to find the SIF. Experimental data for mode-I cracked body problems were presented and com-
pared their study with acceptable analytical results. Nahm et al. (1996) applied the remote measurement
system and image processing technique to study the growth behavior of small surface fatigue cracks in
1Cr-1Mo-0.25V steel. The measurement error of the system appeared to be 0.8% and the system could
measure down to 30 pm of surface fatigue crack length. Chao et al. (1998) applied the digital image pro-
cessing to obtain the deformation fields around a propagating crack tip from photographic films recorded
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by a high-speed Cranz-Schardin camera. The in-plane displacements and strains determined from the pro-
cess were then used to computer the dynamic SIF. Semenski and Jecic (1999) used the reflection method of
caustics for application to cracks in mechanically anisotropic materials. To find the exact position of caus-
tics, the experimental images were analyzed by the simple boundary value method and a more sophisticated
differential method, which is accomplished by shifting the real image onto the gradient image. Takahashi
et al. (2000) presented experimental results which demonstrate restraint of fatigue crack growth in an
Al-Mg alloy by wedge effects of fine particles. In their paper, in situ observations of fatigue cracks were
performed for the two cases using a CCD microscope, with a magnification of x1000. The crack length
and the crack opening displacement (COD) at the notch root were measured. Machida (2000) measured
the point-by-point measurement of in-plane displacement using the pointwise filtering approach of speckle
photography. Young’s fringes patterns were taken by a CCD and analyzed by the image-processing system.
Then, stress-intensity factors were evaluated using the displacement data obtained using speckle photogra-
phy by applying the least-squares method. Lin (2002) used the digital image and multimedia technology
projected in a modified laser shadow spot set-up to engage in a model of the crack growth. With a video
CCD camera and frame grabber analyzing, a series of images of laser shadow spot during crack growth was
used to evaluate the SIF. Oda et al. (2004) analyzed full field infrared radiometry based on thermoelastic
and thermoplastic theory for the non-contact evaluation of stress distributions and deformation in mechan-
ically dissimilar material systems. A CCD camera was employed to investigate the crack tip opening dis-
placement (CTOD) for steel plates loaded in uniaxial tension perpendicular to the weld line.

In the literature, determining mixed-mode SIFs using computer images is limited. This study investigates
the accuracy of the least-squares method incorporating the image processing technique to solve mixed-
mode fracture problems, and micro-vibration isolation is not necessary during the current experiment.

2. Calculating SIFs using least-squares method

The least-squares method has been applied to the thermoelastic experiments and the finite element meth-
od for isotropic and composite materials (Ju, 1996, 1998; Ju et al., 1997; Ju and Rowlands, 2003). In this
study, the similar least-squares method incorporating the displacement filed of the isotropic material from
the finite element analysis and the digital camera was employed.

2.1. Least-squares method using finite element results

Fig. 1 shows an infinite isotropic plate containing a sharp crack, where x and y are the coordinates of an
arbitrary point while the original point of interest is located at the crack tip and the crack surface is in the
negative x direction; u# and v are the displacement in x and y directions, respectively; r and 0 are the polar
coordinates. The in-plane displacements, # and v, of a cracked isotropic and linear-elastic plate are (Irwin
and Washington, 1957)

u= nzo_o; rz"_f {aLKK—kg—k (—1)") cos%@—gcos (g—2>9}
—ail[(lc—&—g—(—l)”) singf)—gsin (3—2)0}}, (1)
0= 3 G {at (x5 - () sinGo+ G sin (5-2)0

—aff{(rc—kg—k(—l)") cosgﬁ—gcos (g—2>0]}, (2)
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Fig. 1. Infinite plate containing a sharp crack.

where u is shear modulus, x = 3 — 4v for plane stress and x = (3 — v)/(1 + v) for plane strain, v is Poisson’s
ratio and a! and a!" are parameters to be determined. Particularly, the first terms of parameters are the func-

tion of SIFs as follows:
K K
a) = \[2% and a' = \/g_ (3)

When the first N terms are selected, the matrix forms of Eqs. (1) and (2) are

u=[4, Ay - Ay By By -+ Bylld} dy - ay & & - al]' or u=[4){a}, 4)
v=[Cy C; -+ Cy Dy Dy --- DN][G{ ay - ay al a - G}HT or v=[CH{a}, (5)
where
P2 n ; n,. n n
A, = o {(K-l-z-i-(—l) )COSEH—ECOS (5—2)0},
—p/? n N . n.n . /n
B, = o {(K-ﬁ-z—(—l) )smEH—Esm (5—2)0}7 .
2 n 2\ . R n . (n
C,= o [(K—E—(—l) )sm59+5 sin (5—2)9} and
—r? n ; n._ n n
D, = o [(K—i—i—i—(—l))COSEO—ECOS(E—Z)O].

The error for m nodes with u and v displacements from numerical simulations or experimental measurement

1S

w= Y (llal - + (Clla) - v (7)

where u;, v;, [A]; and [C]; are the u, v, [A] and [B] of Egs. (4) and (5) at node 7 obtained from finite element
analyses or the experiments.
To minimize the error by using 0n/0{a}, one obtains
[Kl{a} = {F},
where [K] = 37 [4]][4], + [C]'[C], is a symmetric matrix, and {F} = 327 u[4]] + v;[C].

1
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In this least-squares method, the parameters N, R, and R,;, can be adjusted; &V is the number of terms
in Egs. (4) and (5), Ryax and R, are the maximum and minimum radius, respectively, of the area from
which data will be included. This study uses N =1, ..., 8, R.x = the crack length and R,;, = 0.0l mm.

2.2. Least-squares method using crack opening displacements from experiments

In the digital-camera experiment of this study, a number of small square symbols on the paper are at-
tached on the specimen with the y-distance, Ay, from the crack surface as shown in Fig. 1. Then, the crack
opening displacements (COD) at the symbols in x and y directions are measured. From Eqgs. (4) and (5), the
COD between symbols in x and y directions, Au and Av, can be arranged as follows:

Au=[U; Uy - Uyl[a' d' - a&"]" or Au=[U}{d"}, (9)
Ao=[V, Vo - Vyl[d d - a]" or Av=[r|{d'}, (10)
where
—r? n N . n. n . (n
U, = . KKJri—(fl))smEB—Esm(i—Z)B}, o
n/2

V=" [(K —g— (—1)") singe+§ sin (g— 2)9}
and r and 0 are located on the non-negative y-coordinate region.
In the experiment, Ay of Fig. 1 is considerably small. If it is zero, 6 in Eq. (11) equals =, which causes

zero of U, and V, for even terms. This condition produces large error of the least-squares method. Alter-
native is to neglect the even terms of Eqgs. (9) and (10) as follows:

Au=[U, Uy Us U; -+ Uyllal &} a' o' - a}HT or Au = [U]{d"}, (12)
Av=[Vy Vs Vs Vq -+ Vylld & d& & - aHT or Av=[V|{d"}, (13)

where N is odd.
Using the same least-squares method for m pairs of displacement symbols, one obtains

[Ky){a"} = {Fu} and [K/]{d'} = {Fy}, (14)
where

m m m

K ]=§m:[ULT[ULa K )= V), {Fe}=) u[U] and {F/}=3 u[V]. (15)

i=1 i=1 i=1 i=1

3. Illustration of digital-camera experiment
3.1. Specimens

Three A36 steel specimens (300 mm long, 45 mm wide and 6 mm thick) were used in the digital-camera
experiment. The central crack is inclined at 0°, 30° or 50° with respect to the horizontal. The cracks (total
length 2a¢ = 30 mm by 0.3 mm wide) were prepared by electrical discharge machining (EDM). Fig. 2 shows
one of the specimens with the crack angle of 30°. Along the crack line, two papers containing two lines of
square black symbols were attached on the specimen with Ay of 0.5 mm. The length between two symbol
centers is 25/69 mm, and the square symbol size is about 0.2 mm (Figs. 1 and 2). The paper with the thick-
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Fig. 2. Details of the A36 steel specimen with the crack angle of 30° (300 mm long, 45 mm wide, 6 mm thick and crack length
a=15mm).

ness of 0.109 mm is commonly used for laser printers. Those square black symbols were printed using a
laser printer with the resolution of 600 dpi.

3.2. Digital camera, stereo microscope and illuminant

The Fuji S2 Pro Digital Camera connected to a stereo microscope was used in the experiment as shown
in Fig. 3. This camera with 4256 x 2848-pixel maximum resolution is controlled by a camera shooting soft-
ware in a personal computer using a direct IEEE1394 cable connection. The shutter speed of 1/125 s and
ISO-800 were set in the experiment. The image is saved in the uncompressed TIFF file. The magnification of
the stereo microscope is from 7 to 45 times. In the experiment, the working distance between the specimen
surface and the microscope edge is about 100 mm with the magnification of 40 times, which can cover the

Inston-8800

Stereo microscope
Digital camera

Fig. 3. Details of the experimental system.
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image area of 3 mm by 2 mm for the whole resolution of 4256 x 2848-pixel. The digital camera and stereo
microscope are supported on a tripod and allow the adjustment on both horizontal and the vertical direc-
tions. The illuminant is two optical-fiber lights transferred from a 20 V-150-W halogens lamp.

3.3. Experimental procedures

The experiment was performed using the Inston-8800 servohydraulic testing machine with a load cell of
100-KN capacity under load control without vibration isolation schemes. The procedures for the experi-
ment are listed below:

(1) Mount the specimen (see Fig. 2) and adjust the microscope—digital-camera system to obtain an image
with the area of 3 mm by 2 mm approximately (8 square symbols in the x direction; Fig. 4). At the
first time, the image is located near the crack tip.

(2) Set to zero load, and take a picture from the digital camera using the camera shooting software in a
personal computer. Then increase load to 10, 15 and 20 kN (stress of 37.04, 55.56 and 74.07 N/mm?)
to take pictures, respectively. All the pictures are stored with the TIFF format.

(3) Adjust the tripod, so the microscope—digital-camera system is allowed to move to the next section for
observation (gradually move to the crack center), and then repeat procedure (2). After the image near
the crack center is taken, stop the test.

3.4. Evaluation of displacements from computer images

After the experiment, a Fortran program CCD3 (http//myweb.ncku.edu.tw/~juju/index.htm) can be
used to calculate the x and y centers of the square symbols of each picture. The displacements at the centers
of those square symbols are obtained from their coordinate difference between the W-load and zero-load
pictures, where W is the load of 10, 15 or 20 kN used in this paper. Thus, CODs in x and y directions
are calculated from the displacement difference between upper and bottom square symbols. The procedures
of the program CCD3 are illustrated as follows:

(1) Read the TIFF file and obtain the red, green and blue (RGB) values at each pixel (totally, 4256 x 2848
pixels). Subroutine RIMAGE (about 120 statements) in CCD3 program performs this procedure.

(2) This step finds the region of each square symbol. Since the RGB values of the pixels in a square sym-
bol are much different from those of other place. The CCD3 program finds the regions that have the
similar RGB value of the square block. The programming algorithm is similar to the polygon filling of
the computer graphics. Subroutine GP (about 100 statements) in CCD3 program performs this pro-
cedure. Since the symbol, area and size are known, too large or too small regions that are noises or
wrong regions will be skipped.

(3) Calculate the x and y centers of each region of the square symbol for this current picture. It must be
noted that the size of the square symbol is too small (about 0.2 mm), so it is often not a good square
shape. This situation will not cause trouble, since the CCD3 program can find the region that has the
certain RGB values, and the square shape is not necessary.

(4) Go to step 1 for the next picture. Until finishing the last picture, stop the program.

Fig. 4a and b shows the images (TIFF files) taken from the digital camera for the specimen with the
crack angle of 30° under the loads of 0 and 20 kN. Fig. 4c shows the positions of square symbols using
the CCD3 program. Blue symbols are the positions under a zero load and red symbols are the positions
under a 20-kN tensile load. The displacement of each symbol can be clearly seen in Fig. 4c.


http://http//myweb.ncku.edu.tw/~juju/index.htm
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Fig. 4. Computer images taken from the digital camera and generated from the CCD3 program for the specimen with the crack angle
of 30° under loads of 0 and 20 kN. (a) Image from the digital camera (TIFF file) without load. (b) Image from the digital camera (TIFF
file) under the load of 20 kN. (c) Image from the CCD3 program under loads of 0 and 20 kN.
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crack of o =30° and a/W
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specimen width (a/W) is set to 0.4, 0.6 or 0.7. The finite element mesh near the crack of o = 30° and a/
W =0.7 is shown in Fig. 5b and c. The error of the least-squares method and the equivalent SIFs are de-
fined as follows:

|KRef _KLS|
Errorzw, (16)
=KILS/(S\/7w) and FH:KILIS (S\/na), (17)

where KR is the stress intensity factor K or Ky obtained from Kitagawa and Yuuki (1977), K5 is that
calculated from the least-squares method, S is the applied stress at far field and a is the crack length.

4.1. Accuracy of the least-squares method using finite element results
The variations of SIFs affected by N (from 1 to 9) were investigated as shown in Table 1 using Eq. (8),

where the SIFs of Table 1 are averaged under R, =2, 5 and 10 mm and R,;;;, = 0.0l mm. Table 1 indi-
cates that the least-squares results agree well with the referenced SIFs except N < 2. This means that the

Table 1

Least-squares results and errors of numerical experiments

N F iy N F Fy N F Fy

o=15°and a/W =04 o=15°and a/W=0.6 o=15°and a/W=0.7

1 1.0126 (0.027) 0.2118 (0.173) 1 1.1878 (0.025) 0.2069 (0.241) 1 1.3457 (0.023) 0.1939 (0.331)
2 1.0024 (0.036) 0.2537 (0.009) 2 1.1747 (0.036) 0.2697 (0.010) 2 1.3301 (0.035) 0.2883 (0.006)
3 1.0371 (0.003) 0.2556 (0.001) 3 1.2113 (0.006) 0.2723 (0.001) 3 1.3635 (0.011) 0.2917 (—0.006)
4 1.0384 (0.002) 0.2555 (0.002) 4 1.2145 (0.003) 0.2718 (0.003) 4 1.3691 (0.006) 0.2907 (—0.002)
5 1.0393 (0.001) 0.2555 (0.002) 5 1.2166 (0.001) 0.2721 (0.001) 5 1.3748 (0.002) 0.2915 (—0.005)
6 1.0393 (0.001) 0.2555 (0.002) 6 1.2168 (0.001) 0.2723 (0.001) 6 1.3754 (0.002) 0.2924 (—0.008)
7 1.0393 (0.001) 0.2555 (0.002) 7 1.2169 (0.001) 0.2721 (0.001) 7 1.3765 (0.001) 0.2926 (—0.009)
8 1.0393 (0.001) 0.2554 (0.002) 8 1.2170 (0.001) 0.2722 (0.001) 8 1.3769 (0.001) 0.2928 (—0.010)
9 1.0393 (0.001) 0.2555 (0.002) 9 1.2170 (0.001) 0.2722 (0.001) 9 1.3767 (0.001) 0.2928 (—0.010)
o=230°and o/ W=10.4 o =30° and a/ W= 0.6 a=30° and a/W=0.7

1 0.8166 (0.034) 0.3442 (0.235) 1 0.9562 (0.028) 0.3428 (0.286) 1 1.0678 (0.021) 0.3415 (0.328)
2 0.8122 (0.040) 0.4399 (0.022) 2 0.9505 (0.034) 0.4664 (0.028) 2 1.0611 (0.027) 0.4900 (0.035)
3 0.8439 (0.002) 0.4488 (0.002) 3 0.9807 (0.003) 0.4777 (0.005) 3 1.0862 (0.004) 0.5039 (0.008)
4 0.8445 (0.001) 0.4490 (0.002) 4 0.9808 (0.003) 0.4781 (0.004) 4 1.0855 (0.005) 0.5045 (0.007)
5 0.8451 (0.001) 0.4488 (0.002) 5 0.9823 (0.002) 0.4783 (0.004) 5 1.0886 (0.002) 0.5050 (0.006)
6 0.8452 (0.001) 0.4489 (0.002) 6 0.9825 (0.002) 0.4786 (0.003) 6 1.0891 (0.002) 0.5061 (0.004)
7 0.8451 (0.001) 0.4489 (0.002) 7 0.9826 (0.001) 0.4786 (0.003) 7 1.0895 (0.001) 0.5063 (0.003)
8 0.8451 (0.001) 0.4489 (0.002) 8 0.9827 (0.001) 0.4786 (0.003) 8 1.0898 (0.001) 0.5065 (0.003)
9 0.8451 (0.001) 0.4489 (0.002) 9  0.9827 (0.001) 0.4786 (0.003) 9  1.0898 (0.001) 0.5065 (0.003)
o =60°and a/W =04 o =60°and a/W = 0.6 o =60°and a/W =0.7

1 0.2771 (0.043) 0.3670 (0.212) 1 0.3246 (0.026) 0.3844 (0.234) 1 0.3549 (0.012) 0.3893 (0.257)
2 0.2810 (0.030) 0.4626 (0.007) 2 0.3283 (0.015) 0.4967 (0.011) 2 0.3585 (0.001) 0.5165 (0.014)
3 0.2896 (0.000) 0.4655 (0.001) 3 0.3344 (—0.004) 0.4997 (0.005) 3 0.3616 (—0.007) 0.5197 (0.008)
4 0.2895 (0.000) 0.4654 (0.001) 4 0.3331 (0.000) 0.5001 (0.004) 4 0.3593 (—0.001) 0.5205 (0.007)
5 0.2899 (—0.001) 0.4653 (0.002) 5 0.3340 (—0.002) 0.4999 (0.005) 5 0.3605 (—0.004) 0.5203 (0.007)
6 0.2899 (—0.001) 0.4654 (0.001) 6 0.3340 (—0.003) 0.5001 (0.004) 6 0.3606 (—0.004) 0.5207 (0.006)
7 0.2899 (—0.001) 0.4653 (0.001) 7 0.3340 (—0.002) 0.5001 (0.004) 7 0.3605 (—0.004) 0.5208 (0.006)
8 0.2899 (—0.001) 0.4653 (0.001) 8 0.3340 (—0.002) 0.5001 (0.004) 8 0.3605 (—0.004) 0.5208 (0.006)
9 0.2899 (—0.001) 0.4653 (0.001) 9 0.3340 (—0.002) 0.5001 (0.004) 9 0.3605 (—0.004) 0.5208 (0.006)

The value inside () means the error calculated from Eq. (16).
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least-square method incorporating the finite element result can evaluate the SIFs accurately for N = 3.
Moreover, the accuracy is also independent of R,.,. For practice, R,.x should be smaller than the crack
length to avoid including other singular data and R,,;, can equal a very small value to only exclude the sin-
gularity at the crack tip.

4.2. Accuracy of the least-squares method using simulated COD values

The least-squares method of equations in Section 2.2 is used with the simulated COD from finite element
results. Since experimental input values usually contain some scatter error, those simulated COD data from
finite element analyses were subsequently modified according to the following equation:

S = Soriginal(l + RAN x Pfactor)a (18)

where values of S computed by Eq. (18) now become the input for the least-squares method, such that
Soriginal 18 the ‘perfect’” x- or y-COD obtained from the finite element analysis; RAN is a random value
between —1 and 1, and P, 1S a user-selected factor. In this study Pr,cor 18 set to 0, 0.1 and 0.4, in which
0.4 means that the maximum error over Sgiginai can extend to 40%.

The variations of SIFs affected by Pp,cor (0, 0.1 and 0.4), N (from 1 to 9) and Ay (0, 0.25 and 0.5 mm;
Fig. 1) were investigated under the combinations of three crack angles of 15°, 30° or 60° and three a/W of
0.4, 0.6 or 0.7, so there are total 9 cases for a certain Pp,eor, N and Ay. First, Egs. (9), (10), and (14) are
used, which means that the even terms are not removed. At this condition, Eq. (14) is singular for
Ay =0 and no solution can be obtained. For Ay =0.25 and 0.5 mm, Table 2 shows the averaged errors
of least-squares results, where the averaged error is the mean error value (Eq. (16)) of the 9 cases (the com-
binations of three crack angles and three a/ W). Table 2 shows the following features:

Table 2

Averaged errors of least-squares results using Egs. 9, 10, 14

N Ky-error Ky-error N Kj-error Ky-error N Ky-error Kj-error
Pracior =0 and Ay = 0.25 mm Practor = 0.1 and Ay = 0.25 mm Pacior = 0.4 and Ay = 0.25 mm

1 0.162 0.233 1 0.171 0.242 1 0.199 0.267
2 0.277 0.364 2 0.273 0.360 2 0.261 0.349
3 0.050 0.035 3 0.073 0.041 3 0.139 0.088
4 0.087 0.078 4 0.078 0.058 4 0.093 0.113
5 0.012 0.074 5 0.081 0.210 5 0.331 0.620
6 0.013 0.104 6 0.309 0.283 6 0.715 0.738
7 0.040 0.125 7 0.143 0.369 7 2.287 2.356
8 0.065 0.047 8 0.626 2.869 8 2.380 13.052
9 0.137 0.198 9 7.625 47.163 9 32.857 90.139
Ppactor = 0 and Ay = 0.5 mm Pricior = 0.1 and Ay = 0.5 mm Practor = 0.4 and Ay = 0.5 mm

1 0.161 0.246 1 0.171 0.254 1 0.198 0.279
2 0.287 0.382 2 0.281 0.377 2 0.265 0.361
3 0.053 0.037 3 0.073 0.045 3 0.132 0.091
4 0.097 0.109 4 0.099 0.117 4 0.103 0.149
5 0.017 0.119 5 0.184 0.727 5 0.754 2.549
6 0.031 0.070 6 0.293 0.733 6 1.119 1.592
7 0.127 0.084 7 0.817 0.423 7 7.658 0.952
8 0.143 0.081 8 0.419 0.700 8 5.399 2.119
9 0.090 0.222 9 3.693 0.401 9 17.433 1.601

Averaged error is the mean value of Eq. (16) for the 9 cases from the combinations of three crack angles and three a/W.
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(1) For Preor =0 and N =1 or 2, the errors are large and generally the calculated SIFs cannot be used.
For N > 2, the errors are still much larger than those of Table 1, which means that the least-squares
results are not stable when Egs. (9) and (10) are applied.

(2) When a small scatter error is given (Pror = 0.1), the errors of least-squares results increasing propor-
tional to N are considerably large except for N = 3. For a larger scatter error (Pgacior = 0.4), the con-
dition is even worse.

(3) Generally, the errors are larger for smaller Ay. The reason is because a smaller Ay produces more sin-
gular result of Eq. (14).

Then, Eqs. (12)—(14) are used, which means that the even terms are removed. At this condition, Eq. (14)
will not be singular for Ay = 0. Table 3 shows the averaged errors of least-squares results, which indicate
the following features:

(1) For Ppior =0 and N =1, the error is large and generally the calculated SIFs cannot be used. For
N = 3, the errors are small and similar to those of Table 1, which means that the least-squares results
are stable when even terms are removed.

(2) Although the least-squares errors increase slowly proportional to Ppor, they are not sensitive to the
scatter errors. This means that the least-squares method using Egs. (12) and (13) can average the scat-
ter errors of the input data. When scatter errors are large but averaged values of them are small, which
means that the measured data are located positively and negatively along the correct data, the errors
of this least-squares method can be small too.

(3) Generally, the error is larger for a larger Ay. The reason is because the least-squares method using
Egs. (12) and (13) that remove the zero terms is only correct for Ay =0. When Ay increases, the
approximation intensity of the least-squares method using Egs. (12) and (13) will also increase. Thus,
when Ay is not large, the accuracy of this least-squares method can be acceptable.

Table 3

Averaged errors of least-squares results using Eqs. (12)-(14)

N Kj-error Ky-error N Ki-error Kij-error N Kj-error Ki-error
Practor =0 and Ay =0 mm Ppactor = 0.1 and Ay =0 mm Practor = 0.4 and Ay =0 mm

1 3.119 2.832 1 3.083 2.798 1 2.973 2.696
3 0.027 0.019 3 0.020 0.018 3 0.016 0.033
5 0.002 0.008 5 0.020 0.009 5 0.076 0.062
7 0.001 0.003 7 0.020 0.021 7 0.081 0.080
9 0.003 0.006 9 0.019 0.020 9 0.079 0.077
Practor =0 and Ay = 0.25 mm Peacior = .1 and Ay = 0.25 mm Pracior = -4 and Ay = 0.25 mm

1 0.162 0.233 1 0.171 0.242 1 0.199 0.267
3 0.028 0.031 3 0.013 0.048 3 0.048 0.099
5 0.005 0.048 5 0.009 0.054 5 0.033 0.072
7 0.006 0.054 7 0.008 0.050 7 0.021 0.037
9 0.006 0.063 9 0.013 0.058 9 0.043 0.041
Ppactor =0 and Ay = 0.5 mm Ppacior = 0.1 and Ay = 0.5mm Practor = 0.4 and Ay = 0.5 mm

1 0.161 0.246 1 0.171 0.254 1 0.198 0.279
3 0.028 0.056 3 0.012 0.073 3 0.047 0.123
5 0.010 0.084 5 0.014 0.084 5 0.024 0.085
7 0.012 0.099 7 0.015 0.093 7 0.040 0.075
9 0.014 0.111 9 0.019 0.108 9 0.035 0.100

Averaged error is the mean value of Eq. (16) for the 9 cases from the combinations of three crack angles and three a/W.
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5. Experimental results

In this section, the least-squares method is applied to evaluate the SIFs of the experiments illustrated in
Section 3. Fig. 6 shows parts of the CODs measured by the digital camera and calculated by the finite ele-
ment method. This figure indicates that the two results are in good agreement. For the digital-camera exper-
iment, the least-squares results are the averaged values under N =3, 5 and 7 using Eqgs. (12)—(14) (even
terms are removed). The referenced SIFs for comparison as shown in Table 4 are calculated using the
least-squares method of Eq. (8) with the condition of R, =5 mm, R;;, =0.01 mm and N = 8. Table 5
shows the experimental results evaluated by the least-squares method. This table indicates that the SIF
error of the digital-camera experiment is about 8%, which should be acceptable for the mixed-mode frac-
ture problem. From out further investigation, most of the errors or scatters of experiment results are due to
the distortion of the microscope. This condition can sometimes produce about 2-pixel difference between a
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Fig. 6. Comparison of CODs between experimental and finite element results. (a) y-COD under load of 10, 15 or 20 kN for crack angle
of 0°. (b) x- and y-COD under load of 20 kN for crack angle of 30°. (c) x- and y-COD under load of 10 kN for crack angle of 50°.
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Table 4
Least-squares SIFs using finite element analyses for specimens in Fig. 2
a=0° o =30° o= 50°
F Fy Fy I Iy Fi
1.416 0.000 1.050 0.4958 0.5786 0.5765
Table 5
Least-squares SIFs using experimental results for specimens in Fig. 2
Applied stress (N/mm?) o =0° o =30° o =50°
Fy Fu Fy Fu Fy Fu
74.07 1.5361 (—0.085)  0.0904 (-)  1.1400 (—0.086)  0.4967 (—0.002)  0.5620 (0.025)  0.6193 (—0.074)
55.56 1.5123 (—0.068)  0.0795 ()  1.1384 (—0.084)  0.4581 (0.076) 0.5522 (0.042)  0.5536 (0.040)
37.04 1.5016 (—0.060)  0.0721 (-)  1.1230 (—0.069)  0.4203 (0.152) 0.5483 (0.049)  0.5280 (0.084)

The value inside () means the error calculated from Eq. (16), where KR! is obtain from Table 4.

certain location. The micro-vibration and illumination of the experimental system are not dominated. Thus,
to improve the experimental accuracy, it is suggested that a precise microscope or a distortion calibration
procedure be used.

6. Conclusion

This paper developed a least-squares method to find the mixed-mode SIFs of the isotropic material using
the digital-camera experiment, in which two papers containing two lines of square black symbols were at-
tached on the specimen along the crack. Then, a digital camera connected to a stereo microscope was used
to measure the displacement of each symbol so that the CODs of the crack can be evaluated. Finally, the
least-squares method was applied to calculate SIFs using the measured CODs. Finite element simulations
and laboratory experiments were performed to validate that the accuracy of the current least-squares meth-
od is acceptable if the even terms of the Irwin’s equation (Irwin and Washington, 1957) are removed. The
advantages of this method include: (1) specimen preparation and experiment procedures are not compli-
cated and (2) the isolation of the micro-vibration is not necessary, if the shutter speed is appropriately ar-
ranged, and normally 1/60 to 1/125 s can be set when a servohydraulic testing machine is used.
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